Scrigroup - Documente si articole

     

HomeDocumenteUploadResurseAlte limbi doc
BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza
GermanaItalianaLetonaLituanianaMaghiaraOlandezaPoloneza
SarbaSlovenaSpaniolaSuedezaTurcaUcraineana

AdministrationAnimalsArtBiologyBooksBotanicsBusinessCars
ChemistryComputersComunicationsConstructionEcologyEconomyEducationElectronics
EngineeringEntertainmentFinancialFishingGamesGeographyGrammarHealth
HistoryHuman-resourcesLegislationLiteratureManagementsManualsMarketingMathematic
MedicinesMovieMusicNutritionPersonalitiesPhysicPoliticalPsychology
RecipesSociologySoftwareSportsTechnicalTourismVarious

Web Analysis - Buckling

computers



+ Font mai mare | - Font mai mic



Web Analysis - Buckling

The analysis has been made using standard hand-made calculation methods from Bruhn manuals using F.E.M. model freebodies - interface loads - as applied loads. Each panel, except the ones with the filled circle inside no buckling zones -, has been analyzed extracting on each side the freebody interface loads for all LCs considering all the web shell elements and the interface grids.




Fig. 2.1 Rear Bulkhead Representation & Panel Identification

Then, averaged tangential forces and normal plane moments on the panel uprights have been considered for compression and bending action, while the averaged upright radial forces and tangential forces on the flanges have been considered for shear action. Although bending, compression and shear effects have been taken into account to calculate the combined action, the web thinness cannot support all those loads, so this will be analyzed for the shear action while the compressive and bending effects will be recalculated to act on the bulkhead flanges, overloading the items compared to the flange FEM internal loads.

.The picture 2.2 shows the generic bulkhead panel, the applied loads, the constraints and used coordinated systems (general cylindrical Xo (tangential direction), Yo (radial direction); local rectangular X, Y).


Fig. 2.2 Panel Loads & Coordinate System Representation

The F.E.M idealization has been placed on top of the previous CAD bulkhead representation giving the following picture result.

Fig. 2.3 Fem Idealization vs Cad Representation

The following table shows the considered panels CAD geometry:

Panel list

t

(mm)

a (mm)

b (mm)

Ax (mm2)

Ay (mm2)

Jzx

(mm4)

Jzy

(mm4)

Panel.01

Panel.02

Panel.03

Panel.04

Panel.05

Panel.06

Panel.07

Panel.08

Panel.09

Panel.10

Panel.11

Panel.12

Panel.13

Panel.14

Panel.15

Table. 2.4 CAD Geometry

while the following one gives the FEM geometry:

Panel list

t

(mm)

FEM L1

(mm)

FEM L3

(mm)

FEM L2

(mm)

FEM L4

(mm)

Panel.01

Panel.02

Panel.03

Panel.04

Panel.05

Panel.06

Panel.07

Panel.08

Panel.09

Panel.10

Panel.11

Panel.12

Panel.13

Panel.14

Panel.15

Table. 2.5 FEM Geometry (see fig. 7.2.7.1.2.3)

Since the maximum active temperature on the fwd bulkhead is T = 80C, all panel critical stresses have been calculated for this ambient condition. The critical stresses and the allowable combined formulation outcome, as already explained in par. 7.1.2, from ref. . and ref. .

Panel-list

Kc

Kb

KS

Fc

Fb

FS

Panel.01

Panel.02

Panel.03

Panel.04

Panel.05

Panel.06

Panel.07

Panel.08

Panel.09

Panel.10

Panel.11

Panel.12

Panel.13

Panel.14

Panel.15

Table. 2.6 Buckling Coefficients & Allowable Stresses

The following tables group the applied loads & stresses for the most critical shear RF:

Panel

LC

FX 1*

FX 2*

FY 2*

MZ 2*

FX

FX 4*

FY 4*

MZ 4*

LC_2202800_LL_x_SF

LC_2205300_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2200900_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2205600_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2200900_LL_x_SF

LC_2202600_LL_x_SF

see fig. 2.2

Panel

LC

FSX

FSY

fxc

fxb

fx

fs

RS

LC_2202800_LL_x_SF

LC_2205300_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2200900_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2205600_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2200900_LL_x_SF

LC_2202600_LL_x_SF

Table 2.7 Applied loads and RFs

where:

Fsx = (Fx1/L1 FEM + Fx3/L3 FEM)/2;

Fsy = (Fx2/L2 FEM + Fx4/L4 FEM)/2;

fxc = (Fx1 + Fx3) /2/Ax;

fxb = (((Mz2 - Mz4) /2)(b/2))(1/Jzx

fx = fxc+ fxb;

fs = (Fsx + Fsy)/2/t;

Panel

LC

RFs

fxc1

fxb1

fx

fxc2

fxb2

fxb2

LC_2202800_LL_x_SF

LC_2205300_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2200900_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2205600_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2202700_LL_x_SF

LC_2200900_LL_x_SF

LC_2202600_LL_x_SF

Table 2.8 contd - Applied loads and RFs

where:

RFs = combined formulation for RF with Rs only;

fxc1 = inner flange stress due to compression = fxc/A/2;

fxb1 = inner flange stress due to bending = (Mz2 - Mz4) /2/b;

fx1 = total inner flange stress = fxc1 + fxb1

fxc2 = outer flange stress due to compression = fxc/A/2;

fxb2 = outer flange stress due to bending = - fxb1

fx2 = total outer flange stress = fxc2 + fxb2

The fx1 and fx2 columns will be considered for each load condition - the previous table returns the loads for the most critical shear actions only - along all the flanges and the maximum compressive envelope load will be added to the internal flanges-BAR f.e.m. forces and moments to evaluate the effective post-buckling actions on the items.

Here, the most critical full detailed panel (nr. 8) calculation RFs = 1.10 from Table 2.8 - has been reported:



Fig. 2.9 Rear Bulkhead Panel 8 - Zoom

Where, for buckling analysis,:

t = 0.8 mm; a = 235 mm; b = 227 mm;

E80 = 108550 N/mm2; clamped uprights considered;

Kc = 3.73 - ref. . fig. C5.2;

Kb = 21.50 - ref. . fig. C5.14;

Ks = 8.22 - ref. . fig. C5.15;

Fc = Kc E281 (t/b)2 = 3.73 x 108550 x (0.8/227)2 = 5.03 N/mm2;

Fb = Kb E281 (t/b)2 = 21.5 x 108550 x (0.8/227)2 = 28.99 N/mm2;

Fs = Ks E281 (t/b)2 = 8.22 x 108550 x (0.8/227)2 = 11.08 N/mm2;

Fsx = (Fx1/L1 FEM + Fx3/L3 FEM)/2 = - 2221/186.5)/2 = -8.54 N/mm

Fsy = (Fx2/L2 FEM + Fx4/L4 FEM)/2= (-2204/275 -2216/313.2)/2 = -7.58 N/mm;

fxc = (Fy2 + Fy4) /2/Ax = (659 + 562)/2/181.6 = 3.36 N/mm2;

fxb = (((Mz2 - Mz4) /2)(b/2))(1/Jzx) = (((19007+70132)/2)(227/2))(1/779805) = -3.7 N/mm;

fx = fxc+ fxb = 3.36 3.7 = 0.88 N/mm2;

fs = (Fsx + Fsy)/2/t = (-8.54 7.58)/2/0.8 = -10.07 N/mm2;

Rc = fxc/Fc = 0/5.03 = 0.000;

Rb = fxb/Fb = 3.7/28.99 = 0.128;

Rs = fs/Fs = 10.07/11.08 = 0.909;

RF = 2/(Rc + (Rc2 + 4(Rs2 + Rb2)).5) = 1.10 ref. . Par. 6.2.12 eq. 2;

RF Summary

Kind of loading

S=shear, To=torsion, T=tension, C=compression, VM=VonMises, B=bearing, Be=bending Bck=buckling

RF = (Allowable/Applied)

ID

Item

Mat.

Load Case

Kind of load

Strain

Stress

Force

Applied value

Allowable value

R.F.

Remarks

Page

Str

St

F

me

Mpa

N or N/mm

me

Mpa

N or N/mm

Web 8

Ti-6Al-4V

LC_2202700

L_x_SF

Buckling

St

T=80C

TBD

Table. 2.10 Minimum RF



Politica de confidentialitate | Termeni si conditii de utilizare



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 744
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved