Scrigroup - Documente si articole

     

HomeDocumenteUploadResurseAlte limbi doc
BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza
GermanaItalianaLetonaLituanianaMaghiaraOlandezaPoloneza
SarbaSlovenaSpaniolaSuedezaTurcaUcraineana

AdministrationAnimauxArtComptabilitéDiversesDroitéducationélectronique
FilmsL'économieL'histoireL'informatiqueLa biologieLa géographieLa grammaireLa littérature
La médecineLa musiqueLa politiqueLa psychologieLa sociologieLe tourismeLes mathématiquesManagement
PersonnalitésPhysiqueRecettesSportTechnique

Distribution de charge d'influence sur un plan conducteur infini

électronique



+ Font mai mare | - Font mai mic



DOCUMENTE SIMILARE

Distribution de charge d'influence sur un plan conducteur infini

Envisageons un plan conducteur de larges dimensions, relié à la terre. Soit aussi une charge ponctuelle positive q, placée à la distance h de plan.



Puisque le plan conducteur est relié à la terre, son potentiel est nul. Pourtant, il s'électrise négativement (en recevant de la charge négative par le fil de liaison avec la terre). La distribution de cette charge négative n'est pas uniforme, la densité superficielle étant évidemment plus grande dans les points plus approchés de la charge positive.

Le but est de trouver la fonction de répartition de la charge sur la surface du plan conducteur

On observe d'abord que dans tout point d'un plan placé à distances égales des deux charges ponctuelles, égales en module, de signes contraires, le potentiel électrique est nul:


De mÊme, dans ce cas, l'intensité du champ électrique est partout perpendiculaire au plan.

Le systÈme de deux charges est parfaitement équivalent au systÈme composé par la charge ponctuelle et le plan conducteur dans ce qui concerne la valeur du potentiel et les lignes de champ perpendiculaires sur le plan. Par conséquent, la valeur de l'intensité doit Être la mÊme. Elle se calcule facilement utilisant le théorÈme de superposition et la loi de Coulomb

E = E+ + E-

ou

Le plan conducteur divise l'espace en deux régions:

- celle de gauche (la région I), qui ne contient pas de la charge électrique, ainsi que le flux du champ électrique à travers n'importe quelle surface fermée est nul, ce qui, ensemble avec le fait que sur la frontiÈre du domaine le potentiel est aussi nul, mÈne à la conclusion que l'intensité du champ est nulle partout

- celle de droite (la région II), dans laquelle l'intensite du champ électrique n'est pas nulle, étant dirigée dans le proche voisinage du plan conducteur dans une direction perpendiculaire sur le plan.

Voilà pourquoi, en considérant une surface cylindrique, perpendiculaire sur le plan, fermée par deux surfaces parallÈles avec le plan, on obtient la suivante valeur du flux de l'intensité du champ électrique

Y = EIIDS

D'aprÈs le théorÈme de Gauss,

résultant

Ce champ électrique doit correspondre à celui donné par le systÈme de deux charges ponctuelles

Il résulte

Si on fait la représentation graphique du rapport entre la densité de charge et la valeur q ph ) (qui correspond à l = 0), en fonction du rapport l/h, on obtient la courbe ci-jointe. La valeur maximum est atteinte dans le point qui correspond au pied de la perpendiculaire qui relie la charge ponctuelle et le plan. Celui-ci est le point de maximum de l'intensité du champ.

La charge d'influence repartie dans un disque de rayon l centré autour ce point est

Pour que la densité de charge soit maximum dans un point placé à la distance l du pied de la perpendiculaire il faut remplir la condition

ou

Le graphique ci-joint représente le rapport s smax , pour l = 2, en fonction du rapport h/l.



Politica de confidentialitate | Termeni si conditii de utilizare



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 539
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved