Scrigroup - Documente si articole

     

HomeDocumenteUploadResurseAlte limbi doc
BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza
GermanaItalianaLetonaLituanianaMaghiaraOlandezaPoloneza
SarbaSlovenaSpaniolaSuedezaTurcaUcraineana

AdministrationAnimauxArtComptabilitéDiversesDroitéducationélectronique
FilmsL'économieL'histoireL'informatiqueLa biologieLa géographieLa grammaireLa littérature
La médecineLa musiqueLa politiqueLa psychologieLa sociologieLe tourismeLes mathématiquesManagement
PersonnalitésPhysiqueRecettesSportTechnique

POTENTIEL ELECTRIQUE

électronique



+ Font mai mare | - Font mai mic



DOCUMENTE SIMILARE

Potentiel électrique

Étudions une distribution de charges électriques. On peut affirmer

O       la distribution de charges engendre un champ électrostatique



O       le champ électrostatique agit avec une force sur une charge d'épreuve portée dans un point quelconque du champ

O       cette force dépense du travail au cours du déplacement de la charge d'épreuve

O       le travail ne dépend pas de la trajectoire suivie et de la loi de mouvement de la charge d'épreuve

O       par conséquent, le travail est seulement une mesure de l'interaction entre la charge d'épreuve et le champ des autres charges du systÈme, selon la relation

ou

O       si on fait le rapport entre le travail et la quantité d'électricité de la charge d'épreuve, on obtient une grandeur qui caractérise seulement le champ électrique de la distribution de charges

Donc la tension électrique entre deux points dans un champ électrostatique est la grandeur physique scalaire numériquement égale au travail dépensé au déplacement d'une charge unitaire entre les deux points du champ.

Dans le SystÈme International d'unités de mesure, l'unité de mesure de la tension électrique est nommée volt

1 V = 1 J/1 C (volt = joule/coulomb)


Choisissons un point de référence R. Puisque le travail ne dépend pas de la forme de la trajectoire du corps d'épreuve, il vient

LMAN LMRN LMR LRN

En inversant le sens du déplacement du corps, le travail changera de signe

LMR -LRM

Il résulte

LMAN -LRM LRN

ou

UMN LMAN/qp = LRN/qp - LRM/qp

Considérons maintenant que le point de référence R se trouve à une trÈs grande distance de la distribution de charges. Dans ce cas, les travaux LRN ou LRM représentent les travaux de constitution des deux différentes configurations du systÈme formé par la distribution de charges et la charge d'épreuve. On peut aussi dire que LRN ou LRM représentent, jusqu'aux signes, certaines valeurs de l'énergie potentielle du systÈme

LRN = -WN  ; LRM = -WM

Il résulte

Maintenant, on peut définir une nouvelle grandeur physique: le potentiel électrique engendre par une distribution de charges dans un point de l'espace. Celui-ci est la grandeur physique scalaire numériquement égale à l'énergie potentielle du systÈme composé par la distribution de charges et une charge d'épreuve unitaire portée dans ce point

Selon cette définition

UMN = VM - VN

ou

L'unité de mesure du potentiel électrique est la mÊme que l'unité de mesure de la tension électrique.

Ci-aprÈs, on va discuter certaines distributions particuliÈres de charges.

Potentiel de la charge ponctuelle


Soit une charge ponctuelle q, caractérisée par le rayon vecteur r0.

Soit aussi un point M, ayant le rayon vecteur r.

Si on porte dans ce point une charge d'épreuve qp, le systÈme formé a une énergie potentielle

Selon la définition du potentiel, on peut écrire

Il résulte que le potentiel de la charge q possÈde de la symétrie sphérique, c'est-à-dire que tout point situé à la mÊme distance de la charge q a le mÊme potentiel. Le lieu géométrique de tous ces points - une sphÈre de rayon égal à la distance jusqu'à la charge - s'appelle surface équipotentielle.

Potentiel de la distribution discrÈte de charges


Soit une distribution discrÈte de charges, composée par les charges ponctuelles q1 et q2 (avec les rayons vecteurs r1 et r2). Soit aussi le point M de rayon vecteur r.

Portant une charge d'épreuve qp de l'infini jusqu'au point M, on consume le travail

Selon le théorÈme de superposition de l'intensité du champ électrique, on écrit

E(r) = E1 (r) + E2 (r)

Donc

On observe que le travail total est la somme entre le travail dépensé dans le champ de la charge q1 (sans aucune influence due à la charge q2) et le travail dans le champ de q2 (aussi, sans l'influence de q1). Puisque la charge d'épreuve est apportée d'un point de référence placé à l'infini, il résulte que la relation précédente est équivalente à la relation suivante entre les énergies potentielles

-W = -W1 - W2

Divisant par la quantité d'électricité de la charge d'épreuve, on obtient

Généralisant pour un systÈme composé par n charges discrÈtes, on obtient

donc le potentiel électrique engendré par une distribution discrÈte de charges dans un point de l'espace environnant est calculé comme la somme algébrique des potentiels électriques donnés dans ce point par chaque charge de la distribution, sans tenir compte de l'influence réciproque.

Cet énoncé est connu sous le nom de théorÈme de superposition du potentiel électrique.

Potentiel de la distribution continue de charges


Pour calculer le potentiel de la distribution continue de charges, on va procéder de la maniÈre suivante:

O       on divise le corps électrisé dans des volumes élémentaires

O       on calcule la charge électrique du chaque volume élémentaire:

dq = r(r)dV

O       on calcule le potentiel engendré par chaque volume élémentaire dans le point M:

O       on somme, selon le théorÈme de superposition, les potentiels engendrés par tous volumes élémentaires:

Cette relation exprime le potentiel d'une distribution continue de charges.



Politica de confidentialitate | Termeni si conditii de utilizare



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 591
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved