CATEGORII DOCUMENTE |
Astronomie | Biofizica | Biologie | Botanica | Carti | Chimie | Copii |
Educatie civica | Fabule ghicitori | Fizica | Gramatica | Joc | Literatura romana | Logica |
Matematica | Poezii | Psihologie psihiatrie | Sociologie |
1. Reducerea la forma canonica prin metoda Jacobi
2. Reducerea la forma canonica prin metoda Gauss
Teorema 1 Fie f : E → E o forma patratica si fie A = (aij)n,n matricea sa in raport cu baza :
Fie D0 = 1
D1 = a11
Dn = det(A)
Daca toti Di 0, , exista (baza Jacobi) astfel incat in aceasta baza f are forma canonica:
Demonstratie:
Construim baza de forma:
unde constantele se determina din urmatoarele conditii:
F(f1, e1) = 1,
Fie F polara lui f Pentru relatia (1) avem:
F(f1, e1) = 1 T F(c11e1, e1) = c11F(e1, e1) = c11a11 = 1, deci:
Pentru relatia (2) avem:
D2 0
Pentru relatia (j) avem:
T un sistem linear in c1j.cjj
, .
In baza avem X = C X'.
Se inlocuiesc x1.xn in functie de , atunci:
, adica
.
Consecinta
Criteriul lui Sylvester
Fie V un spatiu vectorial, dimV = n, f : V → forma patratica cu matricea A = (aij) in baza Atunci:
a) f este pozitiv definita Di > 0, ;
b) f este negativ definita Di-i Di < 0, .
Demonstratie:
a) T' Se poate arata ca daca f este pozitiv definita T Di
Atunci se poate aplica metoda Jacobi si rezulta ca in V astfel incat:
(*), unde
Daca f este pozitiv definita, aleg succesiv:
T . Dar D0 = 1 > 0 T Di > 0,
' ' Daca Di > 0, T , f(x) > 0, x 0v.
Aplicatie
Sa se reduca la forma canonica prin metoda Jacobi urmatoarea forma patratica:
f : f(x) = ,
D0 = 1
D1 = 1
D2 =
D3 =
Forma canonica este:
f1 = c11e1 = e1
f2 = c12e1 + c22e2 T
f2 = 2e1 - 4e2
f3 = c13e1 + c23e2 + c33e3 T
T , deci
f3 = e3
f4 = c14e1 + c24e2 + c34e3 + c44e4 T
T
T f4 = 2e3 - 4e4
X = C X'
Verificare din X = C X', adica se scriu x1, x2, x3, x4 in functie de .
Fie f o forma patratica. Atunci exista o baza in care f are forma canonica.
Cazuri
a) i, aii 0 se grupeaza toti termenii ce contin pe aii si se formeaza un patrat perfect.
b) toti aii = 0, i = T aij 0. Deoarece
punand si problema se reduce la cazul a).
Aplicatie
Fie n = 3 si
f(x) =
, deci
Notam:
T
Trecerea de la baza la baza , adica trecerea de la elementul
(x1, x2, x3)
la elementul (y1, y2, y3) se face prin matricea
,
adica:
In aceasta baza avem:
T
Se poate demonstra:
Teorema de inertie
Fie V un spatiu vectorial si f : V → o forma patratica. Atunci numarul termenilor pozitivi (si implicit al celor negativi) din forma canonica a lui f este aceeasi indiferent de metoda prin care forma patratica a fost adusa la forma canonica.
Politica de confidentialitate | Termeni si conditii de utilizare |
Vizualizari: 5938
Importanta:
Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved