CATEGORII DOCUMENTE |
Aeronautica | Comunicatii | Electronica electricitate | Merceologie | Tehnica mecanica |
DISTRIBUTIA TEMPERATURII INTR-O PLACA METALICA DREPTUNGHIULARA FARA SURSA DE CALDURA
Se considera o placa dreptungiulara metalica de dimensiuni 0,5X0,4[m] avand grosimea de 0,01m.Conductivitatea termica a materialului placii este λ=1000[W/m/K.Frontiera de V a placii primeste un flux q=500W/m2 iar frontierele S si E sunt mentinute la temperatura constanta de 100C
Sa se calculeze distributia stationara de temperatura din placa folosind reteaua de dicretizare din figura de mai jos.
Rezolvare :
Fig.1
Reteaua si conditiile la limita pentru o problema de conductie termica 2D stationara
Ecuatia conductiei termice 2D stationara pentru conditiile enuntate este:
Ecuatia discretizata pentru un nod interior este:
unde:
Sistemul de ecuatii care rezulta este:
40T8=10T2+10 T14+10T7+10T9
40T9=10T3+10 T15+10T8+10T10
40T10=10T4+10 T16+10T9+10T11
40T11=10T5+10 T17+10T10+10T12
40T14=10T8+10 T20+10T15
40T15=10T9+10 T21+10T14+10T16
40T16=10T10+10 T22+10T15+10T17
40T17=10T11+10 T23+10T16+10T18
40T20=10T14+10 T26+10T19+10T21
40T21=10T15+10 T27+10T20+10T22
40T22=10T16+10 T28+10T21+10T23
40T23=10T17+10 T29+10T22+10T24
Pentru nodurile de pe frontiera V (2, 3, 4, 5) ecuatia discretizata se obtine integrand ecuatia pe jumatatea de volum hasurata din figura :
Ecuatia discretizata pentru un nod pe frontiera Vest este:
b=qAp=500000(0.1·0,01)=500
Sistemul de ecuatii care rezulta este :
20T2=10T8+5 T1+5T3+500
20T3=10T9+5 T2+5T4+500
20T4=10T10+5 T3+5T5+500
20T5=10T11+5 T4+5T6+500
Pentru nodurile de pe frontiera E (26, 27, 28, 29) ecuatia discretizata se obtine integrand ecuatia pe jumatatea de volum hasurata din figura :
Ecuatia pentru un nod pe frontiera Est este:
Sistemul de ecuatii care rezulta este :
20T26=10T20+5 T25+5T27
20T27=10T21+5 T26+5T28
20T28=10T22+5 T27+5T29
20T29=10T23+5 T28+5T30
Pentru nodurile de pe frontiera S (7, 13, 19) ecuatia discretizata se obtine integrand ecuatia pe jumatatea de volum hasurata din figura :
Ecuatia pentru nodul situat pe frontiera Sud este:
Sistemul de ecuatii care rezulta este :
20T7=10T1+5 T13+5T8
20T13=10T7+5 T19+5T14
20T19=10T13+5 T25+5T20
Ne raman de tratat nodurile de colt.
Ecuatia discretizata pentru nodul (1) se obtine integrand ecuatia pe sfertul de volum hasurat din figura :
Ecuatia pentru nodul "1" este:
b=Apq=250
Ecuatia ce trebuie rezolvata pentru nodul (1) devine :
10T1=5T7+5 T2+250
Ecuatia discretizata pentru nodul (25) se obtine integrand ecuatia pe sfertul de volum hasurat din figura :
Ecuatia pentru nodul "25" este:
Ecuatia devine :
10T25=5T19+5 T26
Sistemul de ecuatii este urmatorul:
Programul in Fortran :
c------------ecuatia rezolvata:(divk(gradt))+s=0-------- ----- ------ ---
c------------variabilele de intrare-------- ----- ------ ----- ----- ----------
c nnx : numarul de noduri pe directia x
c nny : numarul de noduri pe directia y
c l : lungimea domeniului de calcul
c h : inaltimea domeniului de calcul
c tb : conditia Dirichlet
c------------conditiile la limita-------- ----- ------ ----- ----- ----- ----- ------
c Dirichlet pe toate frontierele(W,E,S,N)
c t(0,y)=0,t(w,y)=0,t(x,0)=0,t(x,h)=0
c------------variabilele de intrare-------- ----- ------ ----- ----- -----------
c temp : temperatura t(x,y)
c-------- ----- ------ -------- ----- ------ -------- ----- ------ ------
parameter(nnx=21, nny=26, nit=1500)
double precision temp(nnx,nny),ax(nnx,nny),ay(nnx,nny)
double precision a(nnx,nny),b(nnx,nny),c(nnx,nny),wk(nnx,nny)
double precision dif(nnx,nny),temp2(nnx,nny)
double precision a1(nny),b1(nny),c1(nny),wk1(nny),temp1(nny)
double precision dx,dy,tb,l,h,la,gz,s,err
data tb/0.0/,l/0.04/,h/0.05/,la/4.0/,gz/1.0/,err/0.001/
datas/40000000.0/
c------------calculul pasului spatiului(dx)-------- ----- ------ ---
dx=l/(nnx-1)
dy=h/(nny-1)
write(*,*)'dx=',dx
write(*,*)'dy=',dy
c------------initializarea temperaturii-------- ----- ------ -------
do i=1,nnx
do j=1,nny
temp(i,j)=0.01
enddo
enddo
c-----------initializarea conditiilor la limita de tip Dirichlet----- ----- -----
c----- ----- -------------la frontiera NORD-------- ----- ------ -----
do i=1,nnx
temp(i,nny)=tb
enddo
c----- ----- -------------la frontiera SUD-------- ----- ------ -----
do i=1,nnx
temp(i,1)=tb
enddo
c----- ----- -------------la frontiera WEST-------- ----- ------ ----
do j=1,nny
temp(1,j)=tb
enddo
c----- ----- -------------la frontiera EST-------- ----- ------ -----
do j=1,nny
temp(nnx,j)=tb
enddo
c----- ----- ------------bucla de iteratie-------- ----- ------ ------
do k=1,nit
c------------formarea vectorilor diagonalelor-------- ----- ------ -
do i=2,nnx-2
if(i.eq.2)then
c------------diagonala inferioara-------- ----- ------ -------------
do j=2,nny-1
if(j.eq.2)then
a(i,j)=0.0
a1(j-1)=a(i,j)
else
a(i,j)=-la*(dx*gz)/dy
a1(j-1)=a(i,j)
endif
enddo
c------------diagonala superioara-------- ----- ------ ----- ----- -----
do j=2,nny-2
if(j.eq.2)then
c(i,j)=-la*(dx*gz)/dy
c1(j-1)=c(i,j)
else
c(i,j)=-la*(dx*gz)/dy
c1(j-1)=c(i,j)
endif
enddo
c(i,nny-1)=0.0
c1(nny-2)=c(i,nny-1)
c------------diagonala principala-------- ----- ------ ----- ----- -----
do j=2,nny-1
if(j.eq.2)then
b(i,j)=2.0*la*(dy*gz)/dx+2.0*la*(dx*gz)/dy
b1(j-1)=b(i,j)
else
b(i,j)=2.0*la*(dy*gz)/dx+2.0*la*(dx*gz)/dy
b1(j-1)=b(i,j)
endif
enddo
c------------formarea initiala a termenului liber wk----- ----- -----------
do j=2,nny-2
if(j.eq.2)then
wk(i,j)=(la*(dx*gz)/dy)*temp(i,j-1)+
(la*(dy*gz)/dx)*temp(i-1,j)+(la*(dy*gz)/dx)*temp(i+1,j)+ s*dx*dy*1.0
wk1(j-1)=wk(i,j)
else
wk(i,j)=(la*(dy*gz)/dx)*temp(i-1,j)+
* (la*(dy*gz)/dx)*temp(i+1,j)+s*dx*dy*1.0
wk1(j-1)=wk(i,j)
endif
enddo
wk(i,nny-1)=(la*(dy*gz)/dx)*temp(i-1,nny-1)+
* (la*(dy*gz)/dx)*temp(i+1,nny-1)+s*dx*dy*1.0+
* (la*(dx*gz)/dy)*temp(i,nny)
wk1(nny-2)=wk(i,nny-1)
c-----------rezolvarea sistemului-------- ----- ------ ----- ----- -----
CALL TRIDAG(a1,b1,c1,wk1,temp1,nny-2)
c-------formarea solutiei pe toata linia verticala(linia aplicarii TDMA)----- ----- -----
do j=2,nny-1
temp(i,j)=temp1(j-1)
enddo
else
c------------diagonala inferioara-------- ----- ------ -------------
do j=2,nny-1
if(j.eq.2)then
a(i,j)=0.0
a1(j-1)=a(i,j)
else
a(i,j)=-la*(dx*gz)/dy
a1(j-1)=a(i,j)
endif
enddo
c------------diagonala superioara-------- ----- ------ ----- ----- -----
do j=2,nny-2
if(j.eq.2)then
c(i,j)=-la*(dx*gz)/dy
c1(j-1)=c(i,j)
else
c(i,j)=-la*(dx*gz)/dy
c1(j-1)=c(i,j)
endif
enddo
c(i,nny-1)=0.0
c1(nny-2)=c(i,nny-1)
c------------diagonala principala-------- ----- ------ ----- ----- -----
do j=2,nny-1
if(j.eq.2)then
b(i,j)=2.0*la*(dy*gz)/dx+2.0*la*(dx*gz)/dy
b1(j-1)=b(i,j)
else
b(i,j)=2.0*la*(dy*gz)/dx+2.0*la*(dx*gz)/dy
b1(j-1)=b(i,j)
endif
enddo
c------------formarea initiala a termenului liber wk----- ----- --------- ----- -----
do j=2,nny-2
if(j.eq.2)then
wk(i,j)=(la*(dx*gz)/dy)*temp(i,j-1)+
(la*(dy*gz)/dx)*temp(i-1,j)+(la*(dy*gz)/dx)*temp(i+1,j)+
* s*dx*dy*1.0
wk1(j-1)=wk(i,j)
else
wk(i,j)=(la*(dy*gz)/dx)*temp(i-1,j)+
* (la*(dy*gz)/dx)*temp(i+1,j)+(s*dx*dy*1.0)
wk1(j-1)=wk(i,j)
endif
enddo
wk(i,nny-1)=(la*(dy*gz)/dx)*temp(i-1,nny-1)+
* (la*(dy*gz)/dx)*temp(i+1,nny-1)+(la*(dx*gz)/dy)*temp(i,nny)+
* s*dx*dy*1.0
wk1(nny-2)=wk(i,nny-1)
c-----------rezolvarea sisitemului-------- ----- ------ ----- ----- -----
CALL TRIDAG(a1,b1,c1,wk1,temp1,nny-2)
c----- ----- ----formarea solutiei pe toata linia verticala----- ----- ----- ----- -----
do j=2,nny-1
temp(i,j)=temp1(j-1)
enddo
endif
enddo
c------------diagonala inferioara-------- ----- ------ ----- ----- -----
do j=2,nny-1
if(j.eq.2)then
a(nnx-1,j)=0.0
a1(j-1)=a(nnx-1,j)
else
a(nnx-1,j)=-la*(dx*gz)/dy
a1(j-1)=a(nnx-1,j)
endif
enddo
c------------diagonala superioara-------- ----- ------ ----- ----- -----
do j=2,nny-2
if(j.eq.2)then
c(nnx-1,j)=-la*(dx*gz)/dy
c1(j-1)=c(nnx-1,j)
else
c(nnx-1,j)=-la*(dx*gz)/dy
c1(j-1)=c(nnx-1,j)
endif
enddo
c(nnx-1,nny-1)=0.0
c1(nny-2)=c(nnx-1,nny-1)
c------------diagonala principala-------- ----- ------ ----- ----- -----
do j=2,nny-1
if(j.eq.2)then
b(nnx-1,j)=2.0*la*(dy*gz)/dx+2.0*la*(dx*gz)/dy
b1(j-1)=b(nnx-1,j)
else
b(nnx-1,j)=2.0*la*(dy*gz)/dx+2.0*la*(dx*gz)/dy
b1(j-1)=b(nnx-1,j)
endif
enddo
c------------formarea initiala a termenului liber wk----- ----- --------- ----- -----
do j=2,nny-2
if(j.eq.2)then
wk(nnx-1,j)=(la*(dx*gz)/dy)*temp(nnx-1,j-1)+
* (la*(dy*gz)/dx)*temp(nnx-2,j)+(la*(dy*gz)/dx)*temp(nnx,j)+
* s*dx*dy*1.0
wk1(j-1)=wk(nnx-1,j)
else
wk(nnx-1,j)=(la*(dy*gz)/dx)*temp(nnx-2,j)+
* (la*(dy*gz)/dx)*temp(nnx,j)+s*dx*dy*1.0
wk1(j-1)=wk(nnx-1,j)
endif
enddo
wk(nnx-1,nny-1)=(la*(dy*gz)/dx)*temp(nnx-2,nny-1)+
* (la*(dy*gz)/dx)*temp(nnx,nny-1)+
* (la*(dx*gz)/dy)*temp(nnx-1,nny)+s*dx*dy*1.0
wk1(nny-2)=wk(nnx-1,nny-1)
c-----------rezolvarea sistemului-------- ----- ------ ----- ----- -----
CALL TRIDAG(a1,b1,c1,wk1,temp1,nny-2)
c----- ----- ----formarea solutiei pe toata linia verticala----- ----- ----- ----- -----
do j=2,nny-1
temp(i,j)=temp1(j-1)
enddo
c-----------verificarea criteriului de convergenta----- ----- --------- ----- --------
do i=2,nnx-1
do j=2,nny-1
dif(i,j)=abs(100.0*(temp(i,j)-temp2(i,j))/temp(i,j))
enddo
enddo
difmax=dif(2,2)
do i=2,nnx-1
do j=2,nny-1
if(dif(i,j).gt.difmax)then
difmax=dif(i,j)
else
endif
enddo
enddo
write(*,*)'iter,difmax,err',k,difmax,err
write(*,*)'iter,difmax,err',difmax,err
if(difmax.le.err)then
write(*,*)'sortarea dupa criteriul de convergenta,k=',k
goto 100
else
endif
c------------initializarea temperaturii pasului precedent ----- ----- ----- ----- ----
do i=2,nnx-1
do j=2,nny-1
temp2(i,j)=temp(i,j)
enddo
enddo
c-----------sfarsitul buclei de iteratie-------- ----- ------ --------
enddo
100 continue
c-----------scrierea solutiei-------- ----- ------ ----- ----- ----------
open(20,file='laborator8.prn')
do i=1,nnx
write(20,101)(temp(i,j),j=1,nny)
enddo
close(20)
101 format(26(1x,f7.2))
stop
end
subroutine tridag(a,b,c,r,u,n)
parameter (nmax=200000)
integer j
double precision a(n),b(n),c(n),r(n),u(n)
double precision bet, gam(nmax)
c----------a=diagonala inferioara-------- ----- ------ ----- ----- ----
c----------b=diagonala principala-------- ----- ------ ----- ----- ----
c----------c=diagonala superioara-------- ----- ------ ----- ----- ----
c----------r=termenul din partea dreapta-------- ----- ------ -------
c----------u=termenul necunoscut-------- ----- ------ ----- ----- -----
c----------n=dimensiunea sistemului-------- ----- ------ ------------
c----------nmax=numarul maxim al ecuatiei-------- ----- ------ ------
if (b(1).eq.0) pause 'tridag:rewrite equations !'
bet=b(1)
u(1)=r(1)/bet
do j=2,n
gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)
if(bet.eq.0) pause 'tridag failed'
u(j)=(r(j)-a(j)*u(j-1))/bet
enddo
do j=n-1,1,-1
u(j)=u(j)-gam(j+1)*u(j+1)
enddo
return
end
Distributia temperaturii(in Quickfield) :
Politica de confidentialitate | Termeni si conditii de utilizare |
Vizualizari: 1153
Importanta:
Termeni si conditii de utilizare | Contact
© SCRIGROUP 2025 . All rights reserved