CATEGORII DOCUMENTE |
Astronomie | Biofizica | Biologie | Botanica | Carti | Chimie | Copii |
Educatie civica | Fabule ghicitori | Fizica | Gramatica | Joc | Literatura romana | Logica |
Matematica | Poezii | Psihologie psihiatrie | Sociologie |
Polimerizarea stereospecifica
In drumul mereu ascendent al materialelor plastice, o deosebita importanta a avut descoperirea facuta de Karl Ziegler, in anul 1954, si anume ca amestecul de combinatii organo-aluminice si tetraclorura de titan catalizeaza polimerizarea etilenei la presiuni joase. Pana la acea data, polietilena se obtinea numai prin polimerizarea radicalica la presiuni de ordinul catorva mii sau chiar zeci de mii de atmosfere (5000-20.000) atmosfere, conducand la asa numita polietilena de presiune inalta si foarte inalta sau polietilena de densitate joasa (0,92 g/cm . Macromoleculele acestui polimer prezinta numeroase ramificatii, ceea ce face ca materialul plastic sa aiba o cristalinitate de numai 40-50%. Ca urmare, polietilena de densitate joasa se caracterizeaza prin rezistenta termica si mecanica relativ scazute (polietilena moale).
Procedeul Ziegler a revolutionat tehnologia de obtinere a polietilenei, permitand obtinerea industriala a acesteia la presiuni de numai cateva atmosfere. Aceasta polietilena este formata in principal din macromolecule liniare, cu foarte putine ramificatii, ceea ce permite impachetarea usoara a macromoleculelor. Drept urmare, creste continutul in faza cristalina pana la 94%, iar proprietatile termomecanice ale acestui material plastic sunt considerabil imbunatatite.
Polietilena obtinuta prin procedeul Ziegler este cunoscuta sub numele de polietilena de mare densitate, (0,97 g/cm ) sau polietilena dura. Pe langa utilizarile clasice in domeniul ambalajelor, ea are si alte intrebuintari, cum ar fi: conducte de presiune, izolatii electrice, rezervoare foarte mari, ambarcatiuni usoare sau chiar roti dintate.
Descoperirea lui Karl Ziegler a fost dezvoltata cu succes de lucrarile lui Giulio Natta si ale scolii sale. In anul 1955 Giulio Natta pune bazele polimerizarii stereospecifice care permite obtinerea polimerilor stereoregulati, folosind drept catalizator de polimerizare produsii de reactie ai combinatiilor organo-aluminice cu compusii materialelor traditionale asa numitii catalizatori Ziegler-Natta). Importanta acestor descoperiri rezulta si din faptul ca in 1963, celor doi savanti le-a fost decernat premiul Nobel pentru chimie.
Cu acesti catalizatori au fost polimerizati cei mai diversi momomeri, obtinnandu-se materiale plastice cu proprietati noi. Una din proprietatile de baza este aceea ca sunt apte de a cristaliza, datorita aranjamentului spatial regulat al monomerilor si ai substituentilor acestora, faptul acesta conferindu-le o rezistenta mecanica si termica superioara celor ale materialelor plastice atactice (nestereoregulate). In acest sens o mare realizare a constituit-o obtinerea polipropilenei izotactice cu structura cristalina a carei temperatura de topire este de circa 165C, pe cand polipropilena atactica, amorfa are intervalul de inmuiere la 100-120C. Deosebit de interesanta este obtinerea unor polimeri de propilena stereobloc. Sinteza decurge astfel incat in macromolecule se gasesc blocuri cristaline si amorfe. Un asemenea material plastic se topeste intr-un interval larg de temperatura, (100-170C) ceea ce ii faciliteaza prelucrarea.
Pentru a imbunatati calitatile maselor plastice se recurge si la alte procedee. Materialele plastice izotactice se utilizeaza atat ca atare, cat si sub forma compozitiilor lor ranforsate (cu fibre de sticla, grafit, fibre de azbest etc). Ranforsarea (armarea) materialelor plastice mareste mult rezistenta mecanica si greutatea specifica, dar in acelasi timp creste si pretul lor.
Alte cai e modificare a proprietatilor materialelor plastice constau in formarea de aliaje intre ele, grefari de macromolecule pe un material dat etc
Iata pe scurt cateva dintre cele mai interesante domenii de aplicare a materialelor plastice.
Industria de ambalaje este si va ramane si in viitor in lume principalul consumator de materiale plastice. Se estimeaza ca rata de dezvoltare a ambalajelor din plastic va fi in continuare in medie de 10% anual in lume, iar pe tari o dezvoltare proportionala cu produsul national brut. Materialele plastice au patruns adanc in domeniile de utilizare ale sticlei, tablelor si foliilor metalice, extinderea si perfectionarea sistemelor de ambalaje.
In domeniul materialelor de constructii, masele plastice isi vor continua de asemenea ascensiunea, pe plan mondial atingandu-se ritmuri de crestere a productiei si consumului de 10-15%. Principalele categorii de produse sunt profilele din materiale plastice ca inlocuitor ai tablelor ondulate si profilelor metalice, panourile stratificate, elementele prefabricate cu izolatie termica si fonica din spume poliuretanice, retele sanitare si electice cuprinzand tevi din policlorura de vinil si poliolefine, instalatii sanitare din poliesteri armati, polimeri acrilici sau aliaje din diferite materiale plastice cum ar fi acrilonitrilul, butadiena si stirenul(ABS).
Electrotehnica si electronica, beneficiari traditionali ai materialelor polimere, au cunoscut o patrundere relativ importanta a maselor plastice, in special polmerii traditionali ca policlorura de vinil, polietilena, polistirenul dar si unele mase plastice speciale cum sunt policarbonatii, poliacetalii, polifenilen oxidul etc.
Industria constructiilor de masini si autovehicule a inregistrat cel mai inalt ritm de asimilare a mateeialelor plastice: in medie, pe plan mondial, 44% anual. Principalele tipuri de polimeri folositi sunt policlorura de vinil, poliolefinele si polimerii stirenici. Directiile de utilizare a materialelor plastice in constructia de masini se diversifica si se multiplica continuu.
In agricultura ponderea ce mai mare o detin filmele de polietilena de joasa presiune, folosite pentru mentinerea umiditatii solului, protejarea culturilor in sere si solarii, impermeabilitatea rezervoarelor si canalelor.
Alte domenii de aplicatii ale materialelor sintetice polimere sunt tehnicile de varf. Iata cateva exemple:
Industria aerospatiala Conditiile principale impuse materialelor plastice utilizate in acest domeniu sunt: sa reziste la temperaturi ridicate si scazute, sa nu arda, iar daca ard sa nu produca fum. Astfel hublourile avioanelor se confectioneaza din policarbonat rezistent la foc si care are si o exceptionala rezistenta la soc. Pentru cabinele de pasageri se fosesc laminate din rasina epoxidica sau fenolica ranforsate cu fibre de sticla si acoperite cu un strat metalic subtire pentru o cat mai buna rezistenta la foc. La constructia navelor spatiale se utilizeaza placi cu structura sandwich de grafit-rasina epoxidica-bor-aluminiu care rezista la temperaturi ridicate
Industria nucleara. Politetrafluoretilena si politriclorfluoretilena, care rezista la compusii fluorurati agresivi cum este si hexaflurura de uraniu, se utilizeaza la instalatiile industriale destinate separarii izotopice a uraniului, ca elemente de legatura pentru pompe si compresoare, conducte, clape de vane etc. Pentru imbunatatirea rezistentei fata de radiatiile beta sau de amestecurile de radiatii si neutroni provenite de la pilele nucleare se utilizeaza polimeri fluorurati (fluoroplaste) grefati radiochimic cu monomeri de stiren, metil-metacrilat etc.
Industria chimica In acest domeniu, materialele plastice isi gasesc cele mai diverse aplicatii, incepand de la conducte pana la piese componente ale pompelor si compresoarelor care lucreaza in medii corozive, gratie greutatii scazute si rezistentei chimice si mecanice ridicate al acestor materiale. Dar materialele plastice cunosc utilizari importante chiar in constructia unor aparate si utilaje la care cu greu si-ar fi putut inchipui cineva ca se poate renunta la metal. S-au executat astfel reactoare chimice din polipropilena izotactica si poliester armat cu fibre de sticla avand o capacitate de nu mai putin de 48 t, diametrul reactorului fiind de 3m, iar inaltimea de 7,5m.
In prezent se utilizeaza schimbatoare de caldura pentru racirea lichidelor corozive cu tuburi din politetrafluoretilena. Materialele folosite prezinta o rezistenta mult mai mare la coroziune decat tuburile din fonta, avand un cost similar dar o greutate mult mai mica. S-au construit de asemenea tuburi de atomizare a materialelor, de 15m inaltime si 25m diametru, placate in interior cu politetrafluoretilena, pentru solutiile concentrate de saruri alcaline. Politetrafluoretilena, avand proprietati antiaderente impiedica formarea crustelor pe peretii turnului.
Industria electronica. Sunt cunoscute in general proprietatile electroizolante ale polimerilor sintetici. S-au gasit insa utilizari ale materialelor plastice si ca inlocuitori de materiale conductoare si semiconductoare traditionale. Utilizarea lor in acest domeniu se bazeaza pe urmatoarele considerente:
usurinta de formare a piesei cu geometria dorita, aplicand tehnicile conventionale de prelucrare a materialelor plastice;
posibiliatea de realizare a gradului de conductibilitate dorit;
greutate mult mai scazuta a piesei.
Materialele plastice cu conductbilitate electrica se realizeaza pe doua cai principale. Prima este de obtinere de amestecuri polimerice electroconductibile prin introducerea de grafit sau pulberi metalice in masa materialului. Cea de a doua consta in realizarea polimerilor cu structuri moleculare particulare, prin sinteza directa sau prin modificarea catenei polimerice, ca de exemplu: poliftalocianina, polifenocen, polimeri de condensare.
Materialele plastice semiconductoare sunt de doua tipuri:
cu semiconductibilitate de tip ionic, ca de exemplu poliacrilatul de sodiu:
H H H H
-C---C-C---C-
COO- H COO- H
Na+ Na+
cu semiconductibilitate de tip electronic, datorita prezentei de electroni delocalizati (de obicei, electroni de tip π). Un exemplu il constituie polimerul obtinut prin incalzirea poliacrilonitrilului (Ladder-polymer Aceste materiale plastice isi gasesc utilizarea la fabricarea tranzistoarelor.
Schimbarile cele mai spectaculoase nu au loc insa in domeniul asa numitilor polimeri clasici. Anii '80 au marcat dezvoltarea unui sector deosebit de important al sintezei materialelor plastice- cel al polimerilor speciali Produsi in cantitati mici, in conditii speciale, ei sunt capabili sa ofere utilizatorilor performante ridicate.
Simpla aditivare, de exemplu, a cunoscutelor rasini epoxi cu fibre de carbon, duce la aparitia unui material al carui modul de elasticitate specifica este de 10 ori mai mare decat al celor mai bune oteluri produse in acea vreme.
Alte modificari, de data aceasta in insasi structura polimerilor, pot aduce calitati spectaculoase in comportamentul acestora. De exemplu daca lanturile hidrocarbonate ale polimerilor nu sunt lasate sa se plieze la intamplare ci sunt intinse prin etirare, ia nastere o structura semicristalina a masei de material plastic care este caracterizata de o mare reziatenta mecanica. Un alt exemplu il constituie articulatiile din plipropilena etirata, care datorita structurii cristaline rezista la milioane de indoiri.
O alta posibilitate de a modifica srtructura masei de polimeri o constituie legarea chimica a lanturilor hidrocarbonate intre ele. Rezulta asa-numitii polimeri reticulati, care se aseamana cu o retea tridimensionala. Caracteristice pentru aceasta structura sunt infuzibilitatea, o rigiditate neobisnuita, insolubilitate in orice dizolvant.
Materialele plastice speciale se impun tot mai mult si prin calitatile lor optice. Cele mai spectaculoase realizari le consemneaza fibrele optice din polimeri acrilici sau poliamidici, care au o ductibilitate, o rezistenta si o elasicitate mult superioare fibrelor din sticla minerala. In sfarsit , in acelasi domeniu sunt de mentionat polimerii cu structura tridimensionala de foarte mare regularitate, cilindrica sau in lamele echidistante. Ei sunt foarte asemanatori cristalelor lichide. Daca distantele dintre cilindri sau lamele sunt de ordinul lungimilor de unda ale radiatiilor luminoase, are loc un proces de difractie a acestora. Astfel, un material plastic cu o asemenea structura se comporta ca un colorant irizant.
De asemenea, polimerilor sintetici li se poate conferi capacitatea de a conduce curentul electric sau pot deveni electreti-substante cu incarcatura electrica bipolara permanenta.
In sfarsit, cea mai interesanta aventura a materialelor plastice, pare sa devina in viitor, biocompatibilitatea. Prin grefarea pe lantul polimerului a unor grupari chimice adecvate se spera ca acesta nu va mai fi considerat strain de organismul uman. Cat de utila ar fi o asemenea proprietate pe langa medicina viitorului este usor de imaginat, la nivelul actual de cunostinte de care dispunem
Politica de confidentialitate | Termeni si conditii de utilizare |
Vizualizari: 1217
Importanta:
Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved