CATEGORII DOCUMENTE |
Astronomie | Biofizica | Biologie | Botanica | Carti | Chimie | Copii |
Educatie civica | Fabule ghicitori | Fizica | Gramatica | Joc | Literatura romana | Logica |
Matematica | Poezii | Psihologie psihiatrie | Sociologie |
FUNCTIA LOGARITMICA.
|
OBSERVATII. 1. Nu se poate defini logaritmul unui numar real negativ x, deoarece ay > 0, y IR.
alogax = x (identitatea logaritmica fundamentala.)
|
GRAFICUL FUNCTIEI LOGARITMICE
Graficul functiei logaritmice se traseaza in doua cazuri:
Baza a I (0, 1) (spunem ca baza este subunitara). In acest caz graficul functiei intersecteaza axa Ox in punctele de coordonate (0, 1), care este simetricul, in raport cu prima bisectoare, punctului (0, 1) in care graficul functiei exponentiale intersecteaza axa Oy. Graficul functiei logaritmice cu baza subunitara este din ce in ce mai apropiat de axele coordonate, cu cat baza este mai mica.
Baza a > 1 (spunem ca baza este supraunitara). In acest caz graficul functiei intersecteaza axa Ox in punctele de coordonate (0, 1), care este simetricul, in raport cu prima bisectoare, punctului (0, 1) in care graficul functiei exponentiale intersecteaza axa Oy.
PROPRIETATI ALE FUNCTIEI LOGARITMICE.
|
OBSERVATII. g(x1 / x2) = g(x1) - g(x2), x1, x2 > 0; (x1a a (x1), x1 > 0.
|
|
OBSERVATIE. Din faptul ca g este bijectiva avem echivalenta: logax = logay x = y.
|
OBSERVATIE. Pentru a > 1, logax1 < logax2 x1 < x2
Pentru 0 < a< 1, logax1 < logax2 x1 > x2.
Politica de confidentialitate | Termeni si conditii de utilizare |
Vizualizari: 1443
Importanta:
Termeni si conditii de utilizare | Contact
© SCRIGROUP 2025 . All rights reserved