Scrigroup - Documente si articole

     

HomeDocumenteUploadResurseAlte limbi doc
AstronomieBiofizicaBiologieBotanicaCartiChimieCopii
Educatie civicaFabule ghicitoriFizicaGramaticaJocLiteratura romanaLogica
MatematicaPoeziiPsihologie psihiatrieSociologie


Erori de fixare

Fizica



+ Font mai mare | - Font mai mic



Erori de fixare.

Erori de fixare



In urma pozitionarii realizate de mecanismul de pozitionare al dispozitivului, pozitionarea trebuie mentinuta si in cazurile in care asupra obiectului de lucru actioneaza diferite forte. Pentru ca fortele care ar putea sa apara sa nu modifice pozitionarea obiectului de lucru, acesta trebuie sa fie fixat. Fixarea este realizata de mecanismul de fixare al dispozitivului. Cel mai frecvent mod de fixare este prin aplicarea unor forte de strangere. Aplicarea fortelor de strangere insa, va genera deformatii elastice si de contact ale mecanismului de pozitionare, fapt care va crea erori in pozitionarea obiectului de lucru. Aceste erori datorate in exclusivitate deformatiilor provocate de fortele de fixare poarta denumirea de erori de fixare.

Fortele de fixare actionand si asupra elementelor de pozitionare, care alcatuiesc mecanismul de fixare al dispozitivului, vor provoca deformatii elastice si de contact ale acestora, asa cum se observa in figura 6.22.


Fig. 6.22. Deformari elastice si de contact.

Conform figurii 6.22, apar doua tipuri de deformatii, liniare si neliniare. Cele liniare sunt deformatiile elastice, care se pot determina conform relatiei:

,

in care, Ce reprezinta caracteristica elastica a ansamblului obiect de lucru, respectiv mecanismul de pozitionare al dispozitivului, iar F forta care actioneaza asupra acestui mecanism de pozitionare.

Deformatiile de contact, au un comportament nelinear, si se determina cu relatia:

,

in care, Cc este caracteristica de contact intre mecanismul de pozitionare si bazele de pozitionare ale obiectului de lucru.

Directia in care au loc aceste deformatii elastice si de contact depind de directia de aplicare a fortelor de strangere, in raport cu centru elastic al ansamblului format din dispozitiv - obiect de lucru (D-OL). Pentru simplificare, se considera ca directia de aplicare a fortei de strangere trece prin centrul elastic al ansamblului, iar deformatiile care apar sunt in lungul directiei de aplicare a fortei de strangere. Acest caz a fost luat in considerare in fig. 6.23.


Fig. 6.23. Erori de fixare

La aplicarea fortei de strangere S, deformatiile elastice ale ansamblului D-OL si cele de contact ale bazelor de pozitionare vor genera deplasari ale bazei de cotare BC inducand asa numitele erori de fixare. Astfel, un punct P al bazei de cotare, datorita deformatiilor amintite, va suferi o deplasare. Din cauza variatiei caracteristicilor elastice, a celor de contact si respectiv a marimii fortelor de strangere aplicate, pentru multimea OL instalate in dispozitiv se va obtine un camp de dispersie al amplasarii bazelor de cotare, delimitat de punctele extreme Pm, respectiv PM. Acest camp de dispersie reprezinta tocmai componenta aleatoare a erorii de fixare εF, care este un scalar. Componenta sistematica a acestei erori sF, este o marime vectoriala si este cuprinsa intre pozitia prescrisa a bazei de cotare BCprescrisa si mijlocul campului de dispersie εF.

Cauzele aparitiei erorilor de fixare sunt, asa cum s-a amintit, variatia caracteristicilor elastice si de contact ale OL instalate in dispozitiv, precum si a fortelor de strangere aplicate.Deformatia δ care apare poate fi exprimata, astfel:

Componenta aleatoare a erorii de fixare, conform figurii anterioare, se poate exprima astfel:

Componenta sistematica a erorii de fixare, conform figurii anterioare va fi:

Conform relatiilor anterioare erorile de fixare sunt dependente de variatiile deformatiilor elastice, respectiv de contact. Variatiile acestor deformatii sunt determinate de variatiile fortelor de strangere S si deci, implicit de variatiile fortelor normale N (), care apar pe bazele de pozitionare, precum si de variatiile caracteristicilor Ce, Cc. Pentru determinarea erorilor de fixare se aplica principiul superpozitiei, considerand ca efectul final este suma efectelor generate de fiecare cauza in parte, cand celelalte cauze sunt mentinute constante. Astfel, in primul rand se va considera ca variaza doar fortele S, respectiv N, caracteristicile Ce, Cc fiind considerate constante.

Cazul S, N→ variabile, Ce, Cc→ constante

In aceste conditii relatia (6.76) si (6.77) devin:

Se poate definii un coeficient k de variatie al fortei de strangere S, care va fi acelasi si pentru variatia fortelor normale N, deoarece variatia fortelor normale este indusa de variatia fortelor de strangere S. Astfel, k poate fi exprimat prin relatia:

.

Se va definii o forta medie de strangere      , functie de care se vor exprima SM, Sm conform relatiilor:

, respectiv

Similar pot fi determinate fortele normale:

, respectiv .

Inlocuind aceste valori in relatia (6.78) si (6.79) se va obtine:

Se poate vedea ca pentru ks = 1 va rezulta εF' = 0 si sF'= 0, deci nu vor fi erori de fixare. Acest lucru se poate realiza in cazul in care operatorul actioneaza manual dar utilizand chei limitative a fortei de strangere aplicate. O solutie mai moderna este cea care prevede utilizarea actionarii mecanizate in locul celei manuale. In acest fel, forta de strangere este mentinuta constanta mai usor. Si in cazul solutiei mecanizate, la utilizarea actionarii pneumatice sau hidraulice prin mentinerea presiunii constante, se va pastra constanta forta de strangere. La alte actionari care nu asigura forta de fixare constanta se pot utiliza cuplajele limitatoare de moment.

Cazul S, N→ constante, Ce, Cc → variabile

In aceasta ipoteza vor varia doar caracteristicile elastice si de contact ale bazelor de pozitionare ale obiectului de lucru. In cazul cand forta de strangere este constanta, deci implicit si fortele normale vor fi constante, componenta aleatoare a erorii de fixare poate fi:

A fost dovedit experimental ca valorile caracteristicilor de contact variaza cu 10% in jurul valorii Cc. In aceste conditii, componenta aleatoare a erorii de fixare este:

Daca se tine cont de variatia atat a fortelor de strangere cat si a caracteristicilor elastice si de contact ale bazelor de pozitionare atunci prin suprapunerea efectelor se vor obtine pentru calculul erorilor de fixare urmatoarele relatii:

componenta aleatoare a erorii de fixare

componenta sistematica a erorii de fixare

Exista componenta sistematica doar pentru cazul variatiei fortelor de strangere sF', cealalta fiind nula.



Politica de confidentialitate | Termeni si conditii de utilizare



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 1681
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved