CATEGORII DOCUMENTE |
Astronomie | Biofizica | Biologie | Botanica | Carti | Chimie | Copii |
Educatie civica | Fabule ghicitori | Fizica | Gramatica | Joc | Literatura romana | Logica |
Matematica | Poezii | Psihologie psihiatrie | Sociologie |
FUNCTII
DEFINITIE. NOTATIE.
Multimea A se numeste domeniul de definitie a functiei
B se numeste multimea in care functia ia valori sau codomeniul functiei
Daca este o functie de la A la B, atunci se mai spune ca este o aplicatie de la A la B.
De obicei functiile se noteaza cu litere mici , g, h, .
Multimea functiilor de la A la B se noteaza cu F (A, B).
A = domeniul de definitie;
B = codomeniul;
Legea f care leaga cele doua multimi.
MODURI DE A DEFINI O FUNCTIE.
Indiferent de modul in care este definita o functie trebuie precizate cele trei elemente care o caracterizeaza: domeniul de definitie, codomeniul si legea de corespondenta.
FUNCTII DEFINITE SINTETIC corespund acelor functii f : A B pentru care se indica fiecarui element x din A elementul y = f (x) din B.
Acest lucru se poate face fie cu ajutorul diagramei cu sageti, fie cu ajutorul tabelului de valori sau printr-un tablou.
Acest mod de a defini o functie se utilizeaza cand A este o multime finita.
EXEMPLE. 1) Fie f definita prin f f (2) = a, f (3) = b.
In diagrama cu sageti sunt reprezentate multimile prin diagrame, iar legea de corespondenta
prin sageti.
A B Faptul ca fiecarui element x din A ii corespunde un unic
Element y = f (x) din B inseamna pentru diagrama cu sageti ca din fiecare element din A pleaca o singura sageata.
Cum pentru elementele codomeniului nu avem nici o exigenta inseamna ca intr-un astfel de element pot ajunge una, mai multe sageti sau niciuna.
Aceeasi functie o putem defini utilizand tabelul de valori.
Acesta este format din doua linii. In prima linie se trec elemetele multimii pe care este definita functia, iar in a doua linie valorile functiei in aceste elemente.
Pentru cazul analizat tabelul arata astfel:
x 1 2 3
y = f (x) a a b
2) Functia : definita prin (4) = 2 poate fi reprezentata sub forma unui tablou unde in rpima linie avem domeniul de definitie,
1 2 3 4
3 1 4 2
iar in linia a doua sunt valorile functiei in punctele domeniului (3 este valoarea lui in x = 1, 1 este valoarea lui in x = 2, etc.). O astfel de functie se numeste permutare de gradul patru.
OBSERVATIE. Nu putem defini sintetic o functie al carui domeniu de definitie are o infinitate de elemente.
2. FUNCTII DEFINITE ANALITIC. Functiile : A B definite cu ajutorul unei (unor) formule sau a unor proprietati sunt functii definite analitic. Corespondenta leaga intre ele elementul arbitrar x din A de imaginea sa (x).
EXEMPLE. 1) Fie functia : R R, (x) = x2. Aceasta functie asociaza fiecarui numar real x patratul lui, x2.
Functia : Z Z, (x) = x - 1, daca x este par
x + 1, daca x este impar,
este exemplu de functie definita prin doua formule.
Functiile definite prin mai multe formule se numesc functii multiforme.
OBSERVATIE. In cazul functiilor multiforme, fiecare formula este valabila pe o anumita submultime a lui A si deci doua formule nu pot fi folosite pentru determinarea imaginea unuia si aceluias element.
Cea mai frecventa reprezentare a unei functii in matematica este printr-o formula. In acest caz, elementele domeniului de definitie si ale domeniului valorilor nu pot fi decat numere sau "obiecte matematice" pentru care s-au introdus reeguli de calcul corespunzatoare.
De exemplu: y = 3x - 2.
Cand asupra domeniului de definitie nu s-au facut ipoteze speciale, se considera ca facand parte din acesta toate numerele reale, carora din formula respectiva li se pune in corespondenta o anumita valoare.
In cazul functiei y = 3x - 2, domeniul de definitie este alcatuit din multimea numerelor reale.
DEFINITIE. Fie
: A B, g : C D doua
functii; , g sunt functii egale ( = g) daca: A = C (functiile au
acelasi domeniu de definitie), B = D (functiile au
acelasi codomeniu) si (x) = g(x), x I A
(punctual, functiile coincid).
Politica de confidentialitate | Termeni si conditii de utilizare |
Vizualizari: 8148
Importanta:
Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved