Scrigroup - Documente si articole

     

HomeDocumenteUploadResurseAlte limbi doc
AstronomieBiofizicaBiologieBotanicaCartiChimieCopii
Educatie civicaFabule ghicitoriFizicaGramaticaJocLiteratura romanaLogica
MatematicaPoeziiPsihologie psihiatrieSociologie


Progresii aritmetice - Progresii geometrice

Matematica



+ Font mai mare | - Font mai mic



Progresii aritmetice

1.DEFINITIA PROGRESIEI ARITMETICE

Un sir de numere (A1 ,A2 ,. ,An ; n>=1) in care fiecare termen incepand cu al doilea ,se obtine din cel precedent prin adaugarea unui numar constant " r " ,numit ratie ,se numeste progresie aritmetica



An+1 = An + r

2.NOTATIE : An

3.PROPRIETATI

P1: Intr-o progresie aritmetica termenul general An este egal cu primul termen plus de atatea ori ratia cati termeni sunt inaintea sa.

An = A + (n-1) * r

P2: Intr-o progresie aritmetica suma termenilor egali departati de extreme este egala cu suma extremelor .

A + An = A + An-1 = . = Ai + An-i+1

P3: Daca avem trei termeni consecutivi ai unei progresii aritmetice cel din mijloc este media aritmetica a celorlalti doi .

Ak = (Ak-1 + Ak+1

P4: Suma termenilor a unei progresii aritmetice cand se da primul termen si ultimul termen :

Sn = (A + An) *n / 2

P5: Suma termenilor a unei progresii aritmetice cand se da primul termen si ratia :

Sn = [ 2*A + (n-1)*r ]*n/2

4.APLICATII

1(pag71).Sa se scrie primii cinci termeni ai sirului ,cu termenul al n-lea dat de formula :

a)    An = 2(la puterea "-n ")

A = 2(la puterea "0") = 1

A = 2(la puterea "-1") = 1/2

A2 = 2(la puterea "-2") = 1/4

A3 = 2(la puterea "-3") = 1/8

A4 = 2(la puterea "-4") = 1/16

A5 = 2(la puterea "-5") = 1/32

b)   Xn = 5+4*n

X0 X3

X1 X4

X2 = 13 X5

2(pag.72). Sa se gaseasca formula termenului al n-lea (n>=1) pentru fiecare din sirurile :

a)    => An = A1 + (n-1)*r = 1 + (n-1)*2 = 2*n -1

b)   => An = A1 + (n-1)*r = 2 + (n-1)*2 = 2*n

c)    => An = 3* (-1)(la puterea n)

d)   => An = 1/3(la puterea n)

3(pag.72). Sirul (Xn), n>=1, are termenul general dat de formula

Xn = 6- 4*n .Este termen al acestui sir numarul :

a)    (DA)

6- 4*n = -102 => 4*n = 108 => n = 27

b)   (NU)

6- 4*n = -132 => 4*n = 138 => n = 138/4 (nu apartine numerelor naturale)

c)   

6- 4*n = 100 => 4*n = -94 => n = -94/4 (nu apartine numerelor naturale)

7(pag.72). Sa se scrie primii patru termeni ai progresiei aritmetice (An), daca :

a)    A1 = 7 , r = 2

A2 = A1 + r = 9

A3

A4

b)   A1 = -3 , r = 5

A2 = A1 + r = 2

A3

A4

16(pag.73). Sa se rezolve ecuatiile :

a)    1 + 7 + 13 + . +X = 280

An = A1 + (n-1)*r

X = 1 + (n-1)*6

X = 6*n -5

Sn = (A1 + An)*n/2 = 280

(A1 + X)*n/2 = 280 => (1 + 6*n-5)*n/2 = 280

6*n(la puterea 2) -4*n -560 = 0

D = 3364

=> n1 = 10 ; n2 = -28 (nu convine)

=>X = 6*10 -5 = 55

b)   (X + 1) + (X+ 4) + (X + 7) + . + (X + 28) = 155

An = A1 + (n-1)*r

X + 28 = X + 1 + (n-1)*3

27 = (n-1)*3 => n = 10

S10 = (A1 + A10)*10/2 = 155 => 2*X + 29 = 31 => X = 1

20(pag.73). Suma primilor n termeni ai unui sir oarecare (Bn) este data de formula Sn = n(la puterea 2) -2*n + 5. Sa se gasesca primii patru termeni ai acestui sir. Este acest sir o progresie aritmetica.

S1 = A1

S2 = A1 + A2

S3 = A1 + A2 + A3

Sn-1 = A1 + A2 + . + An-1

Sn = A1 + A2 + . + An-1 + An

A1 = S1

A2 = S2 - S1

A3 = S3 - S2

A4 = S4 - S3

2*A2 = A1 + A3 => 2 = 3 + 4 (F)

=>Sirul nu este o progresie aritmetica

Progresii geometrice

1.DEFINITIA PROGRESIEI GEOMETRICE

Fie un sir (Bn) n>=1 , B <>0

Spunem ca termenii sirului (Bn) sunt in progresie geometrica daca fiecare termen incepand cu al doilea se obtine din precedentul inmultit cu un numar constant q >0, numit ratie.

Bn = Bn-1 *q

2.NOTATIE : :-: (Bn) n>=1

3.PROPRIETATI

P1: Daca avem " n " termeni ai unei progresii geometrice atunci Bn este egal cu primul termen ori q la o putere de cati termeni sunt inaintea lui.

Bn = B *q(la puterea n-1)

P2: Daca B , B , . , Bn sunt " n " termeni ai unei progresii geometrice atunci produsul termenilor egali departati de extreme este egal cu produsul extremelor.

B *Bn = B *Bn-1 = . = Bi*Bn-i+1

P3: Daca Bk-1, Bk, Bk+1 sunt trei termeni consecutivi pozitivi ai unei progresii geometrice atunci cel din mijloc este media geometrica al celorlalti doi.

Bk(la puterea 2) = Bk-1*Bk+1

R3: Daca 3 termeni consecutivi ai unui sir de numere pozitive verifica relatia cel di mijloc este media geometrica a celorlalti doi atunci siruleste o progresie geometrica.

P4: Suma primilor " n " termeni consecutivi ai unei progresii geometrice este :

Sn = B * q(la puterea n)-1/q-1

4.APLICATII

26(pag.73). Sa se scrie primii cinci termeni ai progresiei geometrice (Bn) daca :

a)    B = 6 , q = 2

B = B *q = 12

B = B *q = 24

B = B *q = 48

B = B *q = 96

b) B = -10 , q = 1/2

B = B /q = -20

B = B *q = -5

B = B *q = -5/2

B = B *q = -5/4

27(pag.73). Sa se gaseasca primi doi termeni ai progresiei geometrice (Yn) , data astfel :

a)    Y , Y

36 = 24*q => q = 36/24 = 3/2

24 = Y *q => 24 = Y *3/2 => Y

16 = Y *q => 16 = Y *3/2 => Y

b)   Y , Y

-135 = 225*q => q = -135/225 = -9/17

225 = Y *q => 225 = Y *-9/17 => Y

-425 = Y *-9/17 => Y

28(pag.784). Daca se cunosc doi termeni ai unei progresii geometrice (Bn

a)    B = 6 , B = 24 , sa se gaseasca B , B , B

B = B *q(la puterea 2)

B = B *q(la puterea 4)

=> 6/24 = q(la puterea -2) => q = 2

B = B *q(la puterea 2) => B

=> B = B *q(la puterea 6) = 3/2*64 = 96

=> B = B *q(la puterea 8) = 3/2*256 = 384

=>B = B *q(la puterea 9) = 3/2*512 = 768

30(pag.74). Sa se scrie formula termenului al n-lea al progresiei geometrice date prin :

a)    B

Bn+1 = 3*Bn

Bn = B *q(la puterea n-1) = 2*q(la puterea n-1)

Bn+1 = Bn*q => 3*Bn = Bn*q => q = 3

Bn = 2/3*3(la puterea n)

Rezolvati ecuatia : 1+X+X+.+Xss = 0

Sn = 1*(1- Xs)/(1- X)

X <>0 => X<>1

=> 1- Xs = 0 => Xs = 1 => Xs = cos0 +i*sin0

=> Xk = s cos0 + i*sin0 = cos2k /101 + i*sin2k

k=0 => X=1 (nu convine)

k=1 => X=cos2 /101 + i*sin2

k=100 => X=cos200 /101 + i*sin200

Intr-o progresie geometrica avem S = 40, S = 60. Sa se gaseasca S

S = B *(q-1)/(q-1)

S = B *(q -1)/(q-1)

=> S /S = (q-1)/(q -1)= 2/3

=> 3*q-3 = 2*q -2

=> 2*q +3*q-1= 0[G1] 

Notam: q = y

=> 2*y-3*y+1= 0

= 1 => y =2, y

=> q=1 => q=1(nu convine)

=> q=2 => q=

=> S = B *(q-1)/(q-1)= 40 => B

=>S = B1*(q -1)/(q-1) = 280

Sa se determine x astfel incat numerele a+x, b+x, c+x sa fie in progresie geometrica.

(b+x) = (a+x)*(c+x)

b + 2bx + x = ac +ax +cx +x

b-ac = x( a+c-2b)

=> x =(b-ac)/(a+c-2b)

Gasiti primul termen si ratia intr-o progresie geometrica daca:

A + A

A - A + A

A *q + A =7/16 => A (q + 1)=7/16

A q -A *q +A =7/8 => A (q -q +1)=7/8

=> (q+1)/(q -q +1)=1/2 => q+1=1/2 => q= -1/2

=> A (-1/8 +1) =7/16 => A


 [G1]



Politica de confidentialitate | Termeni si conditii de utilizare



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 2800
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2025 . All rights reserved