CATEGORII DOCUMENTE |
Astronomie | Biofizica | Biologie | Botanica | Carti | Chimie | Copii |
Educatie civica | Fabule ghicitori | Fizica | Gramatica | Joc | Literatura romana | Logica |
Matematica | Poezii | Psihologie psihiatrie | Sociologie |
DEFINITIE Fiind date
variabilele aleatoare si
, se
numeste variabila aleatoare complexa
, unde
se numeste
partea reala, iar
se numeste partea imaginara. Valoarea medie a lui
este, prin definitie
.
Fie o variabila
aleatoare reala cu
functie de
repartutie
este o variabila
aleatoare complexa, avand
si deci,
marginita. Valoarea medie a acesteia exista si este o functie
,
, pe care o
numim functie caracteristica a variabilei aleatoare
.
DEFINITIE Numim functie caracteristica a variabilei aleatoare expresia:
presupunand ca suma este convergenta.
PROPOZITIA 1
PROPOZITIA 2 Doua functii de repartitie si
sunt identice daca
si numai daca functiile lor
caracteristice
si
coincid.
PROPOZITIA 3 Fie si
doua variabile
aleatoare. Daca
, atunci
Demonstratie
PROPOZITIA 4 Daca si
sunt variabile aleatoare
independente, atunci
Demonstratie
PROPOZITIA 5 Daca momentul de ordinul (
) al unei
variabile aleatoare
exista, atunci
derivata
exista pentru orice
si au loc relatiile :
Politica de confidentialitate | Termeni si conditii de utilizare |
Vizualizari: 1716
Importanta:
Termeni si conditii de utilizare | Contact
© SCRIGROUP 2025 . All rights reserved